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Abstract Soil organic matter (SOM) is the largest

terrestrial pool of organic carbon, and potential

carbon-climate feedbacks involving SOM decompo-

sition could exacerbate anthropogenic climate change.

However, our understanding of the controls on SOM

mineralization is still incomplete, and as such, our

ability to predict carbon-climate feedbacks is limited.

To improve our understanding of controls on SOM

decomposition, A and upper B horizon soil samples

from 26 National Ecological Observatory Network

(NEON) sites spanning the conterminous U.S. were

incubated for 52 weeks under conditions representing

site-specific mean summer temperature and sample-

specific field capacity (-33 kPa) water potential.

Cumulative carbon dioxide respired was periodically

measured and normalized by soil organic C content to

calculate cumulative specific respiration (CSR), a

metric of SOM vulnerability to mineralization. The

Boruta algorithm, a feature selection algorithm, was

used to select important predictors of CSR from 159

variables. A diverse suite of predictors was selected

(12 for A horizons, 7 for B horizons) with predictors

falling into three categories corresponding to SOM

chemistry, reactive Fe and Al phases, and site moisture

availability. The relationship between SOM chemistry

predictors and CSR was complex, while sites that had

greater concentrations of reactive Fe and Al phases or

were wetter had lower CSR. Only three predictors

were selected for both horizon types, suggesting

dominant controls on SOM decomposition differ by

horizon. Our findings contribute to the emerging

consensus that a broad array of controls regulates

SOM decomposition at large scales and highlight the

need to consider changing controls with depth.
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Introduction

Soils contain the largest actively cycled pool of

terrestrial organic carbon (C) in the form of soil

organic matter (SOM). Estimates of soil organic C

(SOC) stocks in the upper 1 m of soil range from 1325

to 1502 Pg C, while SOC stocks to a depth of 3 m or

greater are estimated to range from 2344 Pg C to

approximately 3000 Pg C (Jobbagy and Jackson 2000;

Tarnocai et al. 2009; Köchy et al. 2015). Despite the

size of this C reservoir and its potential to contribute to

an amplifying carbon-climate feedback, we still lack a

thorough understanding of how SOM will respond to

global change drivers (Bradford et al. 2016). This

knowledge gap limits society’s ability to accurately

predict the effectiveness of climate change mitigation

strategies.

SOM consists of a complex mixture of plant

residues and microbial products in varying states of

degradation. Historically, it was believed that

stable SOM, which has been variably defined as

SOC that remains in the soil for decades to millennia,

was formed from either inherently recalcitrant plant

residues or chemically complex humic substances

(Schmidt et al. 2011; Lehmann and Kleber 2015).

However, the paradigm that has emerged over the past

decade places less emphasis on the chemical proper-

ties of SOM in mineral soils. Instead, it posits that soil

physicochemical properties (e.g., pH, abundance of

reactive metals and divalent cations) and other

ecosystem properties (e.g., vegetation, climate) are

the dominant factors controlling SOM stabilization

(Rasmussen et al. 2018; Kramer and Chadwick 2018;

von Fromm et al. 2021; Yu et al. 2021). With this

paradigm shift, a broad suite of stabilization mecha-

nisms has been identified, including: (1) occlusion

within aggregates, (2) mineral-organic matter interac-

tions, (3) formation of pyrogenic C, (4) biotic

suppression due to climatic factors (e.g., xeric condi-

tions, extreme temperatures), and (5) biotic suppres-

sion due to local environmental conditions (e.g., low

O2 levels) (von Lützow et al. 2006; Schmidt et al.

2011; Rasmussen et al. 2018; Wiesmeier et al. 2019).

Additionally, the critical role of microbes as agents of

both SOM formation (Kallenbach et al. 2016) and

mineralization (Hagerty et al. 2014; Creamer et al.

2015) has gained increased attention. However, the

dynamic nature of microbial communities presents a

major challenge to incorporating microbial commu-

nity characteristics into analyses of controls on SOM

dynamics.

Given the broad suite of factors controlling SOM

stabilization, it has been recognized that there is

widespread spatial variability both vertically and

horizontally in the dominant mechanism(s) controlling

SOM stability (Wiesmeier et al. 2019; Viscarra Rossel

et al. 2019). Several recent large-scale studies, how-

ever, have focused on the role of mineral-organic

matter interactions, with a specific emphasis on the

role of divalent cations (Ca2? and Mg2?) and reactive

(Fe) and aluminum (Al) (Rasmussen et al. 2018;

Kramer and Chadwick 2018; von Fromm et al. 2021;

Yu et al. 2021). This reflects an implicit assumption

that mineral-organic matter interactions are the pri-

mary stabilization mechanism in mineral soils across

different ecosystems. Likewise, it is assumed that

reactive Fe and Al play a more important role in

stabilizing SOM with increasing depth (von Lützow

et al. 2006; Kögel-Knabner et al. 2008; Rumpel and

Kögel-Knabner 2011), although recent findings chal-

lenge this assumption (Yu et al. 2021).

Most recent large-scale studies of SOM have

focused on measuring SOC concentration (Rasmussen

et al. 2018; von Fromm et al. 2021; Quesada et al.

2020; Yu et al. 2021), SOC stocks (Nave et al. 2021),

or certain SOC pools (Kramer and Chadwick 2018;

Viscarra Rossel et al. 2019). Although these measures

provide valuable insights into soil C cycling, they

provide an incomplete picture of SOM dynamics. For

example, recent work using radiocarbon (14C) sug-

gests that controls on C persistence may differ from

controls on SOC concentration (Heckman et al. 2021).

As such, it is necessary to use a complementary suite
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of measures to gain a comprehensive understanding of

SOM dynamics. One such measure lacking from most

recent large-scale studies of SOM (but see Doetterl

et al. 2015) is the decomposability of SOM as

measured using laboratory incubations. Incubations

have a number of acknowledged caveats due to

artificial temperature and moisture regimes, disturbed

soil structure, and the exclusion of plant inputs (Torn

et al. 2009). However, when viewed as a measure of

potential SOM vulnerability to mineralization as

opposed to a representation of in situ SOM dynamics,

incubations are a valuable tool for comparative studies

of SOM. As such, there is an extensive literature in

which they have been used to estimate a number of

SOM properties, such as mean residence time and

stability (Whalen et al. 2000; Swanston et al. 2002;

Torn et al. 2005; Paul et al. 2006).

For this study, we conducted a 52-week laboratory

incubation using a continental-scale soil sample set

from the National Ecological Observatory Network

(NEON) to address two questions. First, what are the

key predictors of SOM vulnerability to mineralization,

which we define as the percentage of initial SOC

respired, across the conterminous U.S.? Second, how

do these key predictors, and thus dominant controls,

differ between A and B horizons? Given that our

samples were from upland sites with mineral soils, we

hypothesized that mineral-organic matter interactions

would be the dominant control in both A and B

horizons as indicated by the selection of proxies of

reactive Fe and Al and exchangeable Ca2? and Mg2?.

Materials and methods

Sampling sites

Between 2015 and 2017, soil samples were taken from

26 NEON sites across the conterminous United States

spanning continental-scale gradients of climate, soil

types, and vegetation cover (Fig. 1; Table 1). At each

site exceptWREF (see Table 1 for Site IDs), 10 4.5-cm

diameter soil cores were taken up to a depth of 2 m

depending on depth to bedrock (two cores from each

of the five soil array plots in the footprint of the site’s

micrometeorological tower) via Giddings probe

(Giddings Machine Company, Windsor, CO, USA).

At WREF, 10 3.45-cm diameter soil cores were taken

to a depth of 0.5 m following the same approach via

handheld AMS corer (AMS Inc., American Falls, ID,

USA). All cores were cooled with ice packs and

shipped in coolers to Oregon State University for

processing.

Sample processing

Of the 10 cores collected per site, five were frozen and

archived for future use, while the remaining five were

refrigerated at 3 �C until processing, typically within

2 weeks of arrival. After cores’ liners were opened

longitudinally, the cores were described according to

U.S. Department of Agriculture Natural Resources

Conservation Service (USDA NRCS) protocols

(Schoeneberger et al. 2012). As part of the description

process, sites that may have had carbonates present

were identified based on NEON megapit or USDA

NRCS Web Soil Survey soil descriptions. For this

subset of sites, carbonates were tested for by applying

10% v/v hydrochloric acid (HCl) to a subsample of

each horizon from each core. Each core was then split

by genetic horizon. Splits corresponding to the same

genetic horizon from different cores were then com-

posited, air-dried, and passed through a 2 mm sieve to

remove rock fragments and any coarse particulate

matter. Subsamples of A and upper B horizons

(henceforth simply referred to as B horizons) were

split using a riffle box (Model CL-244; Soiltest, Inc.,

Evanston, IL, USA) to ensure homogeneous samples

and then sent to Virginia Tech for a 52-week

laboratory incubation.

Laboratory incubation

For the laboratory incubation, 20 g of air-dry soil were

placed in 118 mL polypropylene specimen cups with

one replicate per site-horizon type combination and a

total of 26 samples per horizon type. Samples were

tamped down as needed until approximately repre-

sentative of bulk densities in the field (1.0 g cm-3 for

A horizons and 1.2 g cm-3 for B horizons). Samples

were then placed into quart (946 mL) mason jars with

lids fitted with septa. A small amount (approximately
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10 mL) of water was added to the bottom of the jars to

maintain humidity in the jar headspace and minimize

water loss via evaporation from the sample. Samples

were brought to field capacity (-33 kPa) by adding an

amount of DI water estimated using a pedotransfer

function developed by Saxton et al. (1986) and site-

specific soil texture data. Soil texture data were

obtained for all sites from NEON megapit data

(NEON 2019) with the exception of SJER and SOAP,

for which soil texture data were obtained from the

USDA NRCS Web Soil Survey (Soil Survey Staff

2017). Given the wide range in site temperatures

(Table 1) and the effect of temperature on microbial

community structure and function, sites were binned

by mean summer temperature (PRISM Climate Group

2018), and samples were placed in a 566 L incubator

(VWR Model 10753-894; VWR International, LLC,

Radnor, PA, USA) set at the corresponding group

mean summer temperature.

Over the course of the 52-week incubation, jar

headspace samples were taken periodically (gener-

ally between every 1 to 28 days, depending on

respiration rate, to avoid exceeding headspace CO2

concentrations of 10,000 ppm) using a syringe and

injected in evacuated 10 mL gas chromatograph (GC)

vials with 20 mm butyl septa and aluminum crimp

seals (Catalog No. 20-1100, 20-0020, and 20-0000AS,

respectively; DWK Life Sciences, LLC, Millville, NJ,

USA). After sampling, jars were opened to allow

headspace gas to re-equilibrate with the atmosphere,

and any water lost from the samples via evaporation as

determined by weighing the samples was replenished

by adding DI water. Gas samples for initial ambient

CO2 concentration were collected prior to resealing

the jars and placing them back in their respective

incubator. Headspace samples were analyzed for CO2

concentration using a GC outfitted with a methanizer

and flame ionization detector (FID) (range

370–10,000 ppm CO2, relative standard deviation

(RSD)\ 5%; GC-2010; Shimadzu Scientific Instru-

ments, Columbia, MD, USA). Four CO2 standards

ranging from *370 to *10,000 ppm CO2 were used

to generate a calibration curve for each GC run. Any

decrease in sample concentration due to leakage

during storage was corrected for using a sample loss

curve based on measurements of standards after

varying lengths of storage.

Mass of CO2-C respired was calculated from the

CO2 concentration data according to the ideal gas law.

For samples with substantial amounts of carbonates

(as indicated by a ‘‘k’’ horizon suffix), an isotope

mixing model was used to partition CO2 produced

Fig. 1 Location of 26 NEON sites from which soil samples were taken. Note that the symbols for the following pairs of sites (nearly)

overlap: KONA and KONZ, STEI and TREE, DCFS and WOOD (see Table 1 for full site names)
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from heterotrophic respiration from CO2 produced by

the dissolution of carbonates using gas and solid phase

d13C measurements following the methods of Tamir

et al. (2011). Solid phase d13C as well as percent C and

N were measured using an EA-IRMS (IsoPrime 100

EA-IRMS; Isoprime Ltd, Cheadle, UK) with samples

containing substantial amounts of carbonates (those

having a ‘‘k’’ horizon suffix) being run both with and

without acidification by HCl fumigation prior to

analysis (Harris et al. 2001). Gas phase d13C (13CO2)

was measured by taking headspace samples at four

intervals throughout the incubation for horizons with

substantial amounts of carbonates. These samples

were analyzed at the Cornell Isotope Laboratory using

an IRMS (Delta V Advantage IRMS; ThermoFisher

Scientific, Waltham, MA, USA). Cumulative specific

respiration (CSR) was then calculated by summing the

mass of CO2-C respired and normalizing by the initial

mass of SOC in the sample.

Predictor variables

To evaluate a broad suite of potential predictor

variables, 159 variables (Supplementary Table S1)

were compiled for use in the statistical analysis.

Site-level data

Site-level data, in addition to incubation temperature,

included estimates of net primary production (NPP)

from MODIS data (Running et al. 2015; ORNL

DAAC 2018) and various climate-related data, such as

measures of site temperature, precipitation, and mois-

ture availability (Supplementary Table S1) (Wang

et al. 2012). Specific site moisture availability predic-

tors used include MAP - Hargreaves reference evap-

oration (Hargreaves and Samani 1982; Wang et al.

2012), annual heat:moisture index (calculated as

(mean annual temperature (�C) ? 10)/(mean annual

precipitation (mm)/1000)), summer heat:moisture

index (calculated as mean warmest month temperature

(�C)/(mean summer precipitation (mm)/1000)), and

Hargreaves climatic moisture deficit, which is a

cumulative measure of the monthly difference

between reference evaporation and precipitation.

Sample density fractionation

The analyses described in following sections were

conducted on air-dried, sieved bulk samples from the

composited horizons, and a subset of these analyses

were also conducted on density fractions (refer to

Supplementary Table S1 for specific data for each

fraction used in the statistical analysis). The three

density fractions isolated in our sample set were the

free light fraction, occluded fraction, and heavy

fraction. These fractions were separated using sodium

polytungstate solution adjusted to a density of

1.65 g cm-3 and sonication applied at 750 J mL-1

following standard procedures (Strickland and Sollins

1987; Golchin et al. 1994; Swanston et al. 2005).

Physical and chemical characterization

Bulk soil samples were characterized physically and

chemically. Physical characteristics measured include

midpoint depth of composite horizon, bulk density,

fine and coarse fraction content, and soil texture as

determined by the laser diffraction particle size

method used by Yang et al. (2019) (CILAS 1190;

CPS US, Inc., Fitchburg, WI, USA). The laser

diffraction method is known to systematically over-

estimate silts and underestimate clay (Fisher et al.

2017; Yang et al. 2019). To correct for the bias and

align with the more commonly used pipette method,

the particle diameter cutoff of clay was increased

from\ 2.0 to\ 6.0 lm (Yang et al. 2019). Magnetic

susceptibility, a general proxy for iron (Fe) content

and crystallinity (Mullins 1977; Shang and Tiessen

2000; von Lützow et al. 2007), was measured using a

magnetic susceptibility meter and dual frequency

sensor (MS2 and MS2B, respectively; Bartington

Instruments Ltd, Witney, UK) on 10 g of air-dried soil

in a 10 mL polystyrene sample jar. Soil pH was

measured following standard procedures using a 2:1

DI water-soil mixture. Ammonium acetate extractions

of calcium (Ca), potassium (K), magnesium (Mg), and

sodium (Na) as well as potassium chloride extractions

of Fe and aluminum (Al) were conducted at the

Oregon State University Central Analytical Labora-

tory following standard procedures (Soil Survey Staff

2014). Selective dissolution analyses (sodium

pyrophosphate, ammonium oxalate, and dithionite-

citrate) to measure various phases of Fe, Al, man-

ganese (Mn), and silicon (Si) were conducted
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following standard USDA NRCS protocols (Soil

Survey Staff 2014).

Pyrogenic C quantification

Pyrogenic C was quantified using the benzene poly-

carboxylic acid (BPCA) method as outlined in

Matosziuk et al. (2019, 2020), which uses nitric acid

to oxidize the extended aromatic sheets characteristic

of pyrogenic C into individual carboxylated benzene

rings that can be isolated and quantified using high

performance liquid chromatography (HPLC). Briefly,

ground soil samples containing *2 mg C were

digested in 5 mL nitric acid (HNO3) at 170 �C for

8 h using pressurized microwave vessels (MASS 6;

CEM, Mathews, NC, USA). Samples were filtered

through glass fiber filters (Whatman, GF/A), and the

remaining solids were washed with 5 mL of 1 M

sodium hydroxide (NaOH). Samples were diluted to

50 mL with deionized water, flash frozen with liquid

nitrogen, and freeze-dried (FreeZone Plus; Labconco,

Kansas City, MO, USA). The remaining residue was

dissolved in 2 mL 1 M NaOH and filtered using

0.45 lm nylon syringe filters (Whatman). A 1 mL

aliquot of sample was transferred to a clean vial,

spiked with 600 lL of 2 M HCl, and analyzed by

HPLC (Shimadzu LC-10AD equipped with a SPD-

M20A photodiode array capable of measuring wave-

lengths between 190 and 400 nm; Shimadzu Scientific

Instruments, Columbia, MD, USA). An Agilent Poro-

shell 120 SB-C18 column (Agilent, Santa Clara, CA,

USA) was used with a mobile phase consisting of a

binary gradient of phosphoric acid (H3PO4) (2% in

water) and acetonitrile (Wiedemeier et al. 2013). In

addition to quantifying total BPCA, this method

provides additional information on the structure of

pyrogenic C based on the fragmentation pattern

produced by the acid digestion (Matosziuk et al.

2020), and as such, the benzene hexacarboxylic

acid:total BPCA ratio can serve as an aromatic

condensation index with higher values indicating a

greater degree of condensation.

Cupric oxide oxidation

Whole soils and density fractions were analyzed by

alkaline cupric oxide (CuO) oxidation (Goñi and

Montgomery 2000; Hatten et al. 2012; Hatten and

Goñi 2016) to obtain the yields of lignin (vanillyl,

syringyl, and cinamyl phenols), para-hydroxy ben-

zenes, diacids, fatty acids, and benzoic acids (hydroxy,

mono, di, and tri). Lignin is uniquely produced by

plants, while many of these other biomolecules are

produced by plants, microbes, fungi, algae, and

animals. To isolate the non-plant signal in the CuO

oxidation products, lignin was used to normalize para-

hydroxy benzenes, diacids, and fatty acids. The

benzene tri-carboxylic acids:lignin (BTCA:lignin)

ratio was used as an indicator of pyrogenic C,

following Hatten and Goñi (2016).

Dissolved organic matter (DOM) water extraction

and fluorescence analysis

Dissolved organic matter (DOM) was sequentially

extracted from bulk soils using ultrapure DI water at

two temperatures. Sequential water extracts were

collected by extracting 1 g bulk soil with 30 mL of

ultrapure DI water in a combusted (450 �C for 5 h)

borosilicate glass centrifuge tube. To extract cold

water extractable organic matter (C-WEOM), a proxy

of DOM (von Lützow et al. 2007), samples were

shaken at 20 �C for 2 h in a water shaking bath

(Fisherbrand Isotemp Shaking Water Bath; Thermo

Fisher Scientific, Pittsburgh, PA, USA). After 2 h,

samples were centrifuged (6000 rpm for 8 min), and

C-WEOM in supernatant was collected, leaving the

soil behind. The C-WEOM solution was filtered using

a combusted fritted glass filter assembly (DWK Life

Sciences LLC, Millville, NJ, USA) and combusted

glass fiber filters size F (0.7 lm, Whatman GF/F,

450 �C for 5 h). For the hot water extractable organic

matter (H-WEOM), which serves as a proxy of labile

SOM (von Lützow et al. 2007), 30 mL of ultrapure DI

water was added to the extracted soils and allowed to

shake in a hot water bath at 80 �C for 16 h. After 16 h,

the samples underwent the same sample processing as

C-WEOM. Samples were diluted sixfold to ensure that

the concentration would not interfere with analysis

and stored at 4 �C until analyzed.

WEOM samples were analyzed for UV absorbance

using a UV spectrophotometer (Agilent 8453; Agilent,

Santa Clara, CA, USA) with a 1 cm quartz cuvette

over the wavelength range 190 nm to 1100 nm.

Samples with absorbances greater than 0.3 at

254 nm (Abs254) were diluted with ultrapure DI
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water until Abs254 values were within the range of 0.1

to 0.2 to limit inner-filter effects during collection of

excitation emission matrices (EEMs) (Ohno 2002;

Miller and McKnight 2010; SanClements et al. 2012).

EEMs were collected using a fluorometer (Fluoromax-

3; HORIBA Jobin Yvon Inc., Edison, NJ, USA) over

an excitation range of 240–450 nm in 10 nm incre-

ments, while emission was monitored from 300 to

550 nm in 2 nm increments. All scans were corrected

for instrument specific bias using manufacturer sup-

plied correction factors for both excitation and emis-

sion wavelengths, corrected for inner-filter effects

using UV-VIS absorbance scans, normalized to the

area under the instrument corrected Raman curve at

emission 350 nm, and blank subtracted using cor-

rected EEMs of daily ultrapure DI blanks analyzed

over the same wavelengths as samples (Cory and

McKnight 2005; Cory et al. 2010; Miller and

McKnight 2010).

The fluorescence index (FI) was calculated as the

ratio of emission intensity wavelength of 470 nm to

the emission intensity at 520 nm at an excitation

wavelength of 370 nm. The FI is primarily a measure

of DOM source (i.e., plant versus microbial) and is

generally correlated with the aromaticity of humic

materials (McKnight et al. 2001; Cory and McKnight

2005). As DOM becomes increasingly microbial, the

FI value increases. The humification index, an index

commonly used in fluorometric studies of DOM, was

calculated as the ratio of the peak area under emission

at 435–485 nm and peak area under emission at

300–345 nm at excitation of 254 nm (Zsolnay et al.

1999; Wilson and Xenopoulos 2009; Huguet et al.

2009). Higher humification index values are indicative

of lower H/C ratios, shifting the emission to longer

wavelengths (Zsolnay et al. 1999). The biological

index was calculated as the ratio of maximum intensity

at emission at 380 nm divided by the maximum

intensity between emission at 420 and 435 nm at an

excitation of 310 nm. The biological index indicates

the proportion of recently produced (likely microbial)

organic matter to older, more degraded organic matter.

DOM sequential extraction and mass spectrometry

analysis

Sequential water, methanol, and chloroform extrac-

tions were completed at the Environmental Molecular

Sciences Lab (EMSL), a U.S. Department of Energy

(DOE) national user facility, using a modified method

from Tfaily et al. (2017). Water extracts are a proxy

for labile DOM, chloroform extracts are a proxy for

lipids associated with minerals and cellular mem-

branes, and methanol extracts have characteristics

intermediate between water and chloroform extracts

(Tfaily et al. 2015, 2017; Graham et al. 2017). Soil

extracts were prepared in triplicate by adding 5 mL of

solvent (water, methanol, or chloroform) to 1 g air-

dried, sieved bulk soil from each composited horizon

in 15 mL polypropylene centrifuge tubes (Olympus

50 mL Centrifuge Tubes; Genesee Scientific, San

Diego, CA, USA) and shaken on an orbital shaker

(150 rpm for 2 h). Soils were allowed to settle before

spinning down and collection of supernatant. This

process was repeated adding methanol and chloroform

sequentially to the extracted soils. The water and

methanol extracted organic matter underwent solid

phase extraction (SPE) to desalt samples and improve

signal. Prior to SPE, methanol extracts were diluted

with ultrapure DI water, and both water and methanol

extracts were acidified to a pH of 2 with H3PO4. SPE

cartridges (Bond Elut PPL, 100 mg bed mass, 3 mL

volume, non-polar; Agilent, Santa Clara, CA, USA)

were primed with 1 mL of methanol prior to adding

acidified extract. Once the acidified extract had

completely run through, the SPE cartridge was rinsed

with 15 mL of 10 mM HCl to remove contaminants.

The SPE cartridge was dried using lab air, and after the

cartridge was completely dry, the sample was eluted

off using 1.5 mL of methanol. Extracts were stored in

2 mL MicroSolv vials at -80 �C until analysis.

High resolution mass spectra of DOM extracts were

collected using a 12 T Bruker SolariX Fourier trans-

form ion cyclotron resonance mass spectrometer

(FTICR MS) located at EMSL. Chloroform extracts

were diluted with methanol to improve ionization

prior to analysis. The instrument was regularly

calibrated as outlined in Tfaily et al. (2017). Ion

accumulation time was varied to account for concen-

tration extraction efficiency and ranged from 0.1 to 1 s

to minimize biases from differing organic matter

composition and allow for cross-soil comparison.

Three hundred individual spectra were averaged for

each sample and internally calibrated with the mass

measurement accuracy being better than 1 ppm for

single charged ions.

All sample peaks listed were aligned to each other

prior to formula assignment to eliminate possible mass
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shifts that would impact formula assignment. Formu-

las were assigned using Formularity (Tolić et al. 2017)

that uses the compound identification algorithm

(CIA). Chemical formulas were assigned using the

following criteria: (1) signal-to-noise ratio (S/N)[ 7;

(2) mass measurement error\ 1 ppm; (3) include

only C, H, O, N, S, and P and exclude all other

elements. When there were multiple possible formu-

las, the formula that was assigned was chosen through

the propagation of CH2, H2, and O homologous series.

To ensure the consistent choice of formula when

multiple options were available, the following rules

were used: (1) the formula with the lowest error and

lowest number of heteroatoms was chosen, and (2) the

assignment of one phosphorus atom required four

oxygen atoms.

The assigned formulas were plotted on Van Krev-

elen diagrams using the molar H:C and O:C ratios and

assigned to the major biochemical classes using the

ftmsRanalysis package in R (Bramer et al. 2020).

Based on the assigned molecular formula, Cox Gibbs

free energy (GFE), double bond equivalents (DBE),

double bond equivalents minus oxygen (DBE-O),

aromaticity index, H:C ratio, and O:C ratio were

computed. To compare composition across samples,

the means of the stated metrics were calculated by

taking the mean of the numeric output for each

assigned formula. DBE is the sum of double bonds or

rings in each molecule and is used to determine the

degree of unsaturation or the density of the C–C

double bonds (Koch and Dittmar 2006, 2016). With

decreasing hydrogen atoms, the degree of unsaturation

increases, and the DBE increases. DBE-O is a

measurement of the unsaturation but includes oxygen

in the calculation since most oxygen atoms in DOM

molecules are part of a carboxyl group that is counted

as one DBE.

Statistical analysis

All statistical analyses were performed with R version

3.6.1 (R Core Team 2019) in RStudio 1.2.1335

(RStudio Team 2018). To compare CSR and predic-

tors in A and B horizons, paired sample tests (paired

t-test, Wilcoxon signed-rank test, and Brunner-Mun-

zel rank-order test, depending on whether normality

and homoscedasticity assumptions were met as deter-

mined using the Shapiro–Wilk test and Levene’s test)

were used. The significance level (a) chosen was 0.05.

Where appropriate, the Bonferroni correction was

used to account for multiple comparisons.

To determine which predictors were most impor-

tant for predicting CSR over 52 weeks, the Boruta

package in R was used (Kursa and Rudnicki 2010).

The Boruta package implements the Boruta algorithm,

which is a feature selection algorithm that uses random

forest classification to find all relevant predictors. This

approach differs from traditional ‘‘minimal-optimal’’

feature selection approaches in that all relevant

predictors, regardless of correlations, are selected.

As such, this approach potentially allows for greater

insights into underlying mechanisms by not discarding

predictors; however, this characteristic also means the

output of the Boruta algorithm cannot be directly used

to create a predictive model. Additionally, like other

machine learning feature selection algorithms, the

Boruta algorithm is affected by effect size (Degen-

hardt et al. 2019); consequently, it is possible for a

significantly correlated variable to be excluded if its

effect size is not large enough. Furthermore, the

Boruta algorithm, like other classification and regres-

sion tree methods, is robust to outliers (Murphy 2012;

Härdle and Simar 2019), but as a ‘‘low bias, high

variance’’ method, it can be sensitive to the inputs

used, although random forests average across many

estimates to reduce this effect (Murphy 2012).

Excluding one or more rows (i.e., sites in our data

set) may change the predictors selected, but this may

be due to simply changing the input data set versus the

effect of excluding one or more outliers per se.

Consequently, we present our analysis using all of our

samples despite the presence of outliers.

Additionally, a subset of predictors had missing

values, typically due to not being able to meet the C

mass requirement for certain analyses for samples

with very low C concentrations. Because the Boruta

algorithm cannot be used on data sets with missing

values, chained-equation based multiple imputation

was conducted using the mice (multivariate imputa-

tion via chained equations) package in R to produce

five independently imputed data sets to address any

missing values (van Buuren and Groothuis-Oudshoorn

2011). The Boruta algorithm was used on all five

imputed data sets with default settings (confidence

level = 0.01, multiple comparisons adjustment used)

except for the maximum number of runs (maximum

number of runs = 1000). Those variables that were
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selected in at least three of the five data sets were

considered to be important predictors.

Because the Boruta algorithm uses the all-relevant

approach in which all related features for predicting a

given response are selected, selected predictors were

clustered based on distance calculated using mean

Spearman correlation coefficients for the five imputed

data sets (specifically, Spearman correlation dis-

tance = 1 - |qmean|). A cluster dendrogram was cre-

ated using the ‘‘complete’’ method, and the number of

clusters was determined using the ‘‘elbow method’’ to

visualize broad categories of controls on SOM

vulnerability (Hennig et al. 2015). The sign of the

effect of the predictors was determined by calculating

the Spearman correlation coefficient between a given

predictor and CSR along with the corresponding

p-value using the original non-imputed data set. Using

the Spearman correlation coefficient instead of the

Pearson correlation coefficient takes into account

potential non-linear relationships between predictors

and CSR.

Results

Cumulative specific respiration (CSR)

Cumulative specific respiration (CSR) after 52 weeks

ranged from 2.5 to 17.0% of the initial SOC content for

A horizons and from 1.3 to 23.0% for B horizons

(Fig. 2 and Supplementary Table S2). When account-

ing for multiple comparisons with the Bonferroni

correction (a = 0.017), CSR from 0 to 52 weeks in A

horizons was significantly different (p-value = 0.013)

from that in B horizons (Fig. 2). Likewise, during the

first half of the incubation (0 to 26 weeks), CSR was

significantly higher in A horizons than B horizons (p-

value = 0.002). However, during the second half of

the incubation (26 to 52 weeks), there was no

significant difference between horizon types. A com-

parison of initial SOC content by horizon type can be

found in Supplementary Fig. S1.

Predictors of CSR

Twelve predictors were selected by the Boruta algo-

rithm for A horizon CSR (Table 2, Supplementary

Table S3, and Figs. 3, 4), while only seven predictors

were selected for CSR in B horizons (Table 3,

Supplementary Table S4 and Figs. 5, 6). Relationships

between CSR and individual predictors are shown in

Figs. 3 and 5. Based on the cluster analysis using mean

Spearman correlation distance, the predictors for A

horizons can be clustered into three broad categories

of controls on SOM vulnerability: SOM chemistry,

reactive Fe and Al phases, and site moisture avail-

ability (Fig. 4). Correlations among the predictors in

these categories are shown in Supplementary Fig. S2.

In contrast, the predictors for B horizons can be

clustered into four groups corresponding to two broad

categories of controls: SOM chemistry and site

moisture availability (Fig. 6). Correlations among

these predictors are shown in Supplementary

Fig. S3. The signs of the effect of each predictor on

CSR are summarized in Table 4 through Spearman’s

correlation coefficients and associated p-values. Note

that these correlations and associated p-values were

calculated only for observed values (i.e., using non-

imputed data) and thus demonstrate that the link

between selected predictors and CSR is not an artifact

of imputation.

Discussion

SOM vulnerability to mineralization predicted

by diverse suite of variables

In our study, a diverse suite of variables was selected

for predicting SOM vulnerability to mineralization.

Consistent with previous large-scale studies of SOC

(Doetterl et al. 2015; Rasmussen et al. 2018; Viscarra

Rossel et al. 2019; von Fromm et al. 2021; Yu et al.

2021), this varied group of predictors illustrates how

numerous factors control SOM dynamics at large (i.e.,

continental) scales. The variables selected generally

fall into three broad categories related to (1) SOM

chemistry, (2) reactive Fe and Al phases, and (3) site

moisture availability (Table 4; Figs. 4 and 6).

SOM chemistry

SOM chemistry likely affects SOM vulnerability to

mineralization by a variety of mechanisms. Pyrogenic

C reduced vulnerability, as indicated by the negative

correlation between BTCA:lignin ratio and CSR,

which could be due to sorption of otherwise labile

DOM onto pyrogenic C or ‘‘dilution’’ of more
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mineralizable substrates (DeCiucies et al. 2018).

Selected degradation indices (syringyl phenols

acid:aldehyde ratio and hot water extract biological

index) had conflicting correlations with vulnerability.

In A horizons, more degraded lignin corresponded to

lower CSR, while in B horizons, more degraded DOM

was associated with increased CSR. These results

suggest that the relationship between SOM degrada-

tion state and vulnerability is complex and may

depend on specific molecular characteristics, such as

those that control a molecule’s affinity for sorbing to a

mineral surface (Kaiser et al. 2004; Hernes et al.

2007). Higher C:N ratios had a negative correlation

with CSR, while increasing values of a proxy of the

microbial contribution to SOC (chloroform extract

mean DBE) had a positive correlation with CSR.

These two relationships could indicate a direct effect

of substrate stoichiometry on mineralization. The

predictors within the SOM chemistry category under-

score the importance of substrate chemistry to

decomposition. However, given seemingly contradic-

tory relationships between CSR and different mea-

sures of substrate quality, this relationship appears to

be mechanism dependent with at least some of the

effects of substrate chemistry on CSR potentially

being indirect (e.g., enhanced sorption to mineral

surfaces).

Reactive Fe and Al phases

In contrast to the predictors in the SOM chemistry

category, the four predictors within the reactive Fe and

Al phases category had a consistent effect on CSR,

suggesting a simpler linkage between reactive Fe and

Al phases and SOM vulnerability. Specifically, the

four selected selective dissolution predictors are

proxies for the following: pyrophosphate

extractable Fe represents organically complexed Fe

(Wada 1989); ammonium oxalate extractable Fe and

Al represent organo-metal complexes and short-range-

Fig. 2 Box plot of cumulative specific respiration (CSR)

expressed as % initial soil organic carbon (SOC) respired by

incubation time period and horizon (n = 26 for each horizon

type, 1 replicate per site-horizon combination). Samples

collected from 26 NEON sites spanning the conterminous

U.S. and incubated at site-specific mean summer temperature

and field capacity (-33 kPa) water potential. Lower and upper

box edges represent 25th and 75th percentiles, respectively,

whiskers are drawn to the most distant data points within 1.5

times the interquartile range (IQR), and dots indicate outliers

beyond 1.5 times the IQR. Given p-values correspond to the

Wilcoxon signed-rank test between paired samples from the two

horizon types for a specified time interval
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order oxyhydroxide phases (Wada 1989); and dithion-

ite-citrate extractable Al mainly represents organically

complexed Al, Al from short-range-order oxyhydrox-

ide phases, and Al from isomorphous substitution into

Fe oxides (Wada 1989; Pansu and Gautheyrou 2006).

Increased concentrations of the four selected proxies

of reactive Fe and Al were negatively correlated with

CSR, which is consistent with previous studies

demonstrating the importance of reactive Fe and Al

phases in controlling SOM dynamics (Torn et al. 1997;

Rasmussen et al. 2006, 2018; Doetterl et al. 2015;

Kramer and Chadwick 2018; Yu et al. 2021). It is

worth noting that exchangeable Ca2? and Mg2? were

not selected, which suggests the protective capacity of

divalent cations is reduced at higher moisture levels as

used in the incubation. Furthermore, it should be noted

% clay was not selected, underscoring the importance

of surface chemistry in controlling SOM dynamics

(Rasmussen et al. 2018).

Site moisture availability

The four predictors exclusively linked to climate in the

site moisture availability group (MAP - Hargreaves

reference evaporation, annual heat:moisture index,

summer heat:moisture index, and Hargreaves climatic

moisture deficit) had a consistent effect on CSR, with

drier sites having higher CSR values. The other

predictor clustered in this group was potassium

chloride extractable Al, which is a measure of

exchangeable Al and in soils with a pH\ 5.5, a

measure of active acidity (Soil Survey Staff 2014). In

our sample set, potassium chloride extractable Al was

dependent on a site’s moisture availability (Supple-

mentary Fig. S2), which explains it being clustered

with predictors of site moisture availability.

Exchangeable Al toxicity has been observed under

acidic conditions (Illmer et al. 1995, 2003; Kunito

et al. 2016), and consequently, Al toxicity is one

potential mechanism by which SOM at wetter, more

acidic sites is made less vulnerable to mineralization.

Likewise, concentrations of reactive Fe and Al phases

are positively correlated with site moisture availability

(Supplementary Fig. S2), and thus interactions

between SOM and reactive Fe and Al phases are

another mechanism by which SOM at wetter sites

could be protected (Rasmussen et al. 2018; Kramer

and Chadwick 2018). Site moisture availability also

causes changes in plant productivity and litter chem-

istry (Schuur andMatson 2001; Schuur 2003; Santiago

Table 2 Predictors selected by Boruta algorithm as important

for predicting cumulative specific respiration (CSR) in A

horizons for a majority of the imputed data sets. Predictors are

associated with bulk soil samples unless specified otherwise.

Times selected (%) indicates the percentage of imputed data

sets (n = 5) for which a given predictor was selected. Mean

importance rank indicates the relative predictive importance as

determined by the Boruta algorithm (e.g., lower values indicate

higher importance). Imputed (%) states the percentage of data

for which missing data were imputed using multivariate

imputation by chained equations for use with the Boruta

algorithm

Predictor Times selected (%) Mean importance rank Imputed (%)

Hargreaves climatic moisture deficit 100 1.4 0

BTCA:lignin ratio (heavy fraction) 100 1.8 27

Ammonium oxalate extractable Fe 100 4.0 0

Ammonium oxalate extractable Al 100 5.4 0

MAP - Hargreaves reference evaporation 100 6.2 0

Sodium pyrophosphate extractable Fe 100 6.4 0

Annual heat:moisture index 100 8.6 0

Potassium chloride extractable Al 80 11.2 0

Syringyl phenols acid:aldehyde ratio 60 11.2 12

Summer heat:moisture index 80 11.6 0

BTCA:lignin ratio (bulk soil) 60 12.6 12

Dithionite-citrate extractable Al 60 13.0 0

BTCA benzene tri-carboxylic acids products, MAP mean annual precipitation
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et al. 2005; Luo et al. 2017) as well as microbial

community structure and function (Drenovsky et al.

2010; Brockett et al. 2012; Guenet et al. 2012; Tatsumi

et al. 2019), providing additional mechanisms that

may affect SOM vulnerability.

Given correlations among site moisture availability

and various potential SOM stabilization mechanisms,

it is challenging to distinguish direct effects from

indirect effects of site moisture availability. However,

because indices of site moisture availability, such as

MAP - Hargreaves reference evaporation, are inte-

grative measures of several controls on SOM decom-

position, such variables are potentially powerful

predictors of SOM vulnerability to decomposition,

and given their ability to be accurately estimated at

broad scales, they are potentially useful for scaling

predictions of SOM vulnerability.

Differences in key predictors with depth driven

by several factors

Although there were several predictors selected for A

and B horizons that indicate some controls on SOM

vulnerability common to both surface and subsurface

horizons (i.e., pyrogenic C, site moisture availability),

most important predictors of SOM vulnerability to

mineralization were unique to only one horizon type

(Table 4), suggesting dominant controls on C turnover

generally change with depth. We hypothesize that the

differences in dominant controls are driven by changes

in the soil environment; SOM concentration, chem-

istry, and accessibility; and microbial community

composition and function with depth.

By being at or close to the surface, A horizons are

more affected by surficial influences and have

Fig. 3 Cumulative specific respiration (CSR) expressed as %

initial soil organic carbon (SOC) respired versus 12 predictors

selected by Boruta algorithm for A horizons. Spearman

correlation coefficient (rho) and p-value were calculated using

non-imputed data with number of samples for a specific

predictor given in parentheses. Samples collected from 26

NEON sites spanning the conterminous U.S. and incubated at

site-specific mean summer temperature and field capacity

(-33 kPa) water potential. Panels correspond to the following:

(a) benzene tri-carboxylic acids products (BTCA):lignin ratio

(bulk soil), (b) BTCA:lignin ratio (heavy fraction), (c) syringyl
phenols acid:aldehyde ratio, (d) sodium pyrophosphate

extractable Fe, (e) ammonium oxalate extractable Fe, (f) am-

monium oxalate extractable Al, (g) dithionite-citrate

extractable Al, (h) mean annual precipitation (MAP) - Harg-

reaves reference evaporation, (i) annual heat:moisture index,

(j) summer heat:moisture index, (k) Hargreaves climatic

moisture deficit, and (l) potassium chloride extractable Al
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characteristics that suggest some similarities with

litter layers. The selection of certain predictors

exclusively for A horizons, such as syringyl phenols

acid:aldehyde ratio, which is linked to lignin inputs

from angiosperms, and summer heat:moisture index,

which is a measure of site moisture availability for

Fig. 4 Cluster dendrogram based on mean Spearman correla-

tion distance for imputed predictors selected by Boruta

algorithm for cumulative specific respiration (CSR) in A

horizons. Predictors are associated with bulk soil samples

unless specified otherwise. Clusters are indicated by colored

lines underneath dendrogram with labels corresponding to

associated predictor category (SOM chemistry, reactive Fe and

Al phases, and site moisture availability). BTCA, benzene tri-

carboxylic acids products; MAP, mean annual precipitation

Table 3 Predictors selected by Boruta algorithm as important

for predicting cumulative specific respiration (CSR) in B

horizons for a majority of the imputed data sets. Predictors are

associated with bulk soil samples unless specified otherwise.

Times selected (%) indicates the percentage of imputed data

sets (n = 5) for which a given predictor was selected. Mean

importance rank indicates the relative predictive importance as

determined by the Boruta algorithm (e.g., lower values indicate

higher importance). Imputed (%) states the percentage of data

for which missing data were imputed using multivariate

imputation by chained equations for use with the Boruta

algorithm

Predictor Times selected (%) Mean importance rank Imputed (%)

Hot water extract biological index 100 2.2 8

Annual heat:moisture index 100 3.2 0

MAP - Hargreaves reference evaporation 100 3.8 0

Chloroform extract mean DBE 100 4.8 0

C:N ratio (bulk soil) 80 5.2 0

BTCA:lignin ratio 80 7.0 42

C:N ratio (heavy fraction) 60 11.2 15

MAP mean annual precipitation, DBE double bond equivalents, BTCA benzene tri-carboxylic acids products
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only a fraction of the year, is consistent with our

understanding of surficial influences having the

greatest effect at or near the surface in soils, especially

over shorter timescales (Jobbagy and Jackson 2000;

Gray et al. 2015). Furthermore, differences in SOM

chemistry between A and B horizons (Supplementary

Fig. S4) highlight the different degrees of transforma-

tion of surficial inputs from plants. Proxies of lignin

degradation (syringyl phenols acid:aldehyde ratio) and

organic matter degradation (3,5-di-hydroxy benzoic

acid:lignin ratio, fatty acids:lignin ratio, and di-

acids:lignin ratio) show that SOM in A horizons is

less degraded than SOM in B horizons and conse-

quently more similar to the original plant inputs.

Consistent with this, A horizons also have a higher

proportion of C in the free light fraction and greater

concentrations of sodium pyrophosphate

extractable Mn (Supplementary Fig. S4), which is a

proxy for bioavailable Mn and has been shown to be

important for forest floor litter decomposition (Berg

et al. 2007; Keiluweit et al. 2015). These various lines

of evidence point to the conclusion that SOM in A

Fig. 5 Cumulative specific respiration (CSR) expressed as %

initial soil organic carbon (SOC) respired versus 7 predictors

selected by Boruta algorithm for B horizons. Spearman

correlation coefficient (rho) and p-value were calculated using

non-imputed data with number of samples for a specific

predictor given in parentheses. Samples collected from 26

NEON sites spanning the conterminous U.S. and incubated at

site-specific mean summer temperature and field capacity

(-33 kPa) water potential. Panels correspond to the following:

(a) benzene tri-carboxylic acids products (BTCA):lignin ratio,

(b) C:N ratio (bulk soil), (c) C:N ratio (heavy fraction),

(d) chloroform extract mean double bond equivalents (DBE),

(e) hot water extract biological index, (f) mean annual

precipitation (MAP) - Hargreaves reference evaporation, and

(g) annual heat:moisture index

123

Biogeochemistry



horizons has characteristics intermediate between

organic matter in litter layers and SOM in deeper

mineral horizons.

B horizons are less susceptible to surficial influ-

ences and have a different set of characteristics from A

horizons. B horizons have higher bulk density values

than A horizons (Supplementary Fig. S4), which has

implications for the movement of water, gases, DOM,

and heat. Furthermore, concentrations of dithionite-

citrate extractable Fe, a proxy of pedogenically active

Fe (Strahm and Harrison 2008), are higher in B

horizons than A horizons (Supplementary Fig. S4),

suggesting a different weathering and/or leaching

environment from surface horizons. Furthermore, the

concentration of organic C is lower in B horizons,

SOM is more chemically degraded, and a smaller

proportion of C is in the free light fraction (Supple-

mentary Fig. S4). Together, these factors may lead to a

weaker relationship between reactive Fe and Al phases

and vulnerability in the subsoil, which is demonstrated

by a substantially lower R2 value for B horizons when

CSR is regressed against the selected proxies of

reactive Fe and Al phases by horizon type (except for

ammonium oxalate extractable Al, Supplementary

Fig. S5). This finding is consistent with the findings of

Yu et al. (2021) who found that the importance of

geochemical predictors of SOC concentration did not

increase with depth as typically assumed. Conse-

quently, this is not to say that reactive Fe andAl phases

play no role in controlling SOM vulnerability in B

horizons per se. Rather, their effect seems to be

modulated by the different physicochemical environ-

ment in the subsoil compared to surficial soils.

In addition to the proxies of the soil environment

and SOM characteristics that we did measure, there

are likely substantial differences in microbial com-

munity composition and function between horizon

types. Microbial biomass and diversity are known, for

example, to decrease with depth (Fierer et al. 2003;

Eilers et al. 2012; Stone et al. 2014; Brewer et al.

2019). Consequently, although we did not measure

microbial community characteristics, we can conjec-

ture that changes in the microbial community, such as

a decrease in the fungal:bacterial ratio with depth

Fig. 6 Cluster dendrogram based on mean Spearman correla-

tion distance for imputed predictors selected by Boruta

algorithm for cumulative specific respiration (CSR) in B

horizons. Predictors are associated with bulk soil samples

unless specified otherwise. Clusters are indicated by colored

lines underneath dendrogram with labels corresponding to

associated predictor category (SOM chemistry and site moisture

availability). MAP, mean annual precipitation; DBE, double

bond equivalents; BTCA, benzene tri-carboxylic acids products
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(Fierer et al. 2003; Stone et al. 2014) or changes in

extracellular enzyme activities with depth (Dove et al.

2020), have important consequences for SOM miner-

alization in A horizons versus B horizons. Differences

in the microbial community together with differences

in the soil environment and SOM characteristics

contribute to SOM in A horizons generally behaving

differently from SOM in B horizons. Thus, models of

SOM cycling may benefit from considering how

controls on SOM decomposition change with depth.

Conclusion

Using data from a 52-week laboratory incubation of

soils from NEON sites spanning the conterminous

United States, this study provides evidence for the

dominant role of three categories of controls on SOM

vulnerability at a continental scale: SOM chemistry,

reactive Fe and Al phases, and site moisture avail-

ability. Of these three categories, predictors of site

moisture availability, such as MAP - Hargreaves

reference evaporation, have the most potential for

being used to scale estimates of SOM vulnerability

given their integrative nature and ability to be

accurately estimated at broad scales. Furthermore,

the few key predictors common to both horizons

indicates different dominant controls on C turnover

between surface and subsurface horizons, which we

posit is due to differences in the soil environment,

SOM characteristics, and microbial communities. A

horizons have SOM with characteristics intermediate

between organic matter in litter layers and SOM in

deeper mineral horizons, while B horizons have more

degraded SOM that is potentially more likely to be

sorbed to mineral surfaces. These insights underscore

the importance of the vertical heterogeneity of soils in

understanding SOM dynamics and the challenge this

presents for modeling efforts.
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Harris D, HorwáthWR, van Kessel C (2001) Acid fumigation of

soils to remove carbonates prior to total organic carbon or

carbon-13 isotopic analysis. Soil Sci Soc Am J

65:1853–1856. https://doi.org/10.2136/sssaj2001.1853
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Tfaily MM, Chu RK, Tolić N et al (2015) Advanced solvent

based methods for molecular characterization of soil

organic matter by high-resolution mass spectrometry. Anal

Chem 87:5206–5215. https://doi.org/10.1021/acs.

analchem.5b00116

TfailyMM, Chu RK, Toyoda J et al (2017) Sequential extraction

protocol for organic matter from soils and sediments using

high resolution mass spectrometry. Anal Chim Acta

972:54–61. https://doi.org/10.1016/j.aca.2017.03.031
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